
Vulkan Tutorial

What do I expected to learn

overview and some simple details of Vulkan
API

draw a scene with Vulkan

write vulkan codes on my own for simple
cases

learn it within a week

Why Vulkan

cross platform

more control over the hardward
mobile

multi-thread support

lower overhead

overview

Big picture of drawing a triangle

set up a VkInstance

pick a physical device

create a logical device (VkDevice)

specify queue families

most operations should be sent to a queue
for execution

queues are allocated from queue families

create a window surface with native API
(with GLFW)

create a swap chain

relationship between image and swap chain

manage image views and frambuffers
acquire an image from swap chain, wrap it
into image views and a framebuffer

manage render passes

set up VkPipeline

manage command pool and command buffer

allocate command buffers from a command
pool

record commands into command buffer

submit commands

main loop

coding conventions

use structs to pass parameters

sType

pNext

VkResult

validation layers

extensions

vkCreateXXX/vkAllocateXXX =>
vkDestroyXXX/vkFreeXXX

vkGetXXX/vkEnumerateXXX

pass a pointer to the number to get the
number of items

invoke the function again to retrieve data

drawing a triangle

base code & glfw window creation don't forget glfwInit()

create instance

The instance is the connection between
your application and the Vulkan library and
creating it involves specifying some details
about your application to the driver.

VkApplication

application name

engine name

api version

VkInstance
application

extensions

introduce a validation layer customize message callback (skipped)

pick physical device

get queue family indices

create logical device

why: the logical device interface with the
physical device

specify queue create info

specify device features

specify device-level extensions

set device-level layers for compatibility

create window surface

establish a connection between vulkan and
window system to present result to the
screen

requires WSI extension for integration with
the native window system

just use glfw api

create present queue
query for prensentation support

in other words, ensure a device can present
iamges to the surfaces we created

create swap chain

ensure the physical device is capable

choose the right settings

format
pixel format

color space

present mode

immediate

fifo

fifo relaxed

mailbox

extent
height

width
should be in right units

etc.

save the format and extent for later use

create image views why
VkImageView describes how to access the
image and which part of the image to access

for example if it should be treated as a 2D
texture depth texture without any
mipmapping levels.

set up the pipeline

structure

input assembler
collect raw vertex data from buffers

index buffer may be involved

vertex shader run for every vertex

tessellation subdevide geomerty based on certain rules

geometry shader run for every primitives(triangle, line, point)

rasterization

discretizes the primitives into fragments.
These are the pixel elements that they fill on
the framebuffer

use depth testing to eliminate obscured
fragments

fragment shader

invoked for every fragment that survives
and determines which framebuffer(s) the
fragments are written to and with which
color and depth values

using the interpolated data from the vertex
shader, which can include things like
texture coordinates and normals for lighting

color blending
mix different fragments that map to the
same pixel in the framebuffer

pipelines are fixed after creation

some stages can be skipped

skip tessellation and geometry shader if we
do not need them

skip fragment shader while generating a
shadow map

create shaders modules
glsl ==glslc==> SPIR-V => machine language
of GPU

configure fixed-functions

dynamic state

can actually be changed without recreating
the pipeline at draw time

size of the viewport

vertext input

input assembly

viewport and scissors A viewport basically describes the region of
the framebuffer that the output will be
rendered to.

scissor rectangles define in which regions
pixels will actually be stored

multiple viewports and scissors is possible,
but it requires to enable a device feature
during logical device creation

rasterizer state
cull mode

front face direction

multisampling

depth test

color blending

uniform variables specify in VkPipelineLayout

create pipeline very very verbose

create render passes

attachment description

subpasses

fix subpass dependencies

create command pool and command buffer

record command buffer

vkCmdXXX

begin

start renderpass

bind pipeline

set viewport and scissor

draw

end renderpass

draw frame

outline

wait for previous frame to finish

acquire an image from swapchain

record a command buffer

submit recorded command buffer

present the swapchain image

sync

VkSemaphore
GPU-GPU

order between queue operations

VkFence
GPU-CPU

block the host(CPU)

tiny fix: allow multiple frames in flight

tiny fix: recreate swapchain

vertex buffer

binding description & attribute description

set it when create pipeline

create buffer

allocate memory
a little complicated when selecting memory
type

bind buffer (command)

use a staging buffer for optimal performance

use a index buffer

uniform shader

use resource descriptors for volatile
attributes passed to shader

uniform attributes
matrices

UBO

descriptor sets, descriptor pool, descriptors,
uniform buffers

"Think of a single descriptor as a handle or
pointer into a resource. That resource being
a Buffer or a Image, and also holds other
information, such as the size of the buffer, or
the type of sampler if it’s for an image. A
VkDescriptorSet is a pack of those pointers
that are bound together. Vulkan does not
allow you to bind individual resources in
shaders. They have to be grouped in the
sets." -- Vulkan Guide

usage

specify descriptor layout during pipeline
creation

allocate a descriptor set from descriptor pool

bind the descriptor set during rendering

texture

create a staging buffer

copy image data into the staging buffer

create texture image and allocate memory
for it

format, extent, mip levels, samplers, tiling,
sharing mode, initial layout, etc.

transition image layout to
TRANSFER_DST_OPTIMAL

use image memory barrier,
vkCmdPipelineBarrier

srcAccessMask, dstAccessMask

srcStage, dstStage

copy staging buffer contents to the image

transiton image layout to
SHADER_READ_ONLY_OPTIMAL

create image view

create image sampler repeat mode, anisotropy, filter

update descriptor set to reference image
view and sampler

update vertex data, vertex shader and
fragment shader

attachment = render target

https://vulkan-tutorial.com/
https://vkguide.dev/docs/chapter-4/descriptors/#:~:text=A%20VkDescriptorSet%20is%20a%20pack%20of%20those%20pointers,very%20inefficient%20and%20won%E2%80%99t%20work%20in%20many%20hardware.

