g e)

What do I expected to learn

lower overhead

Big picture of drawing a triangle

- manage command pool and command buffer

overview and some simple details of Vulkan
(" API

I~ draw a scene with Vulkan

| write vulkan codes on my own for simple
cases

\- learn it within a week

cross platform

mobile
more control over the hardward —(

multi-thread support

~ set up a VkInstance
I~ pick a physical device

~ create a logical device (VkDevice)

most operations should be sent to a queue
~ specify queue families

for execution

queues are allocated from queue families

n create a window surface with native API
(with GLFW)

Presentation

> | Application
Engine

2. Present

Acquired Imageq
| I
I .
1 I
| i
1 |

|| I

I]

II]

I

Unused Images | || :
h]

| 4

2. Present
~ create a swap chain —

1. Acquire

relationship between image and swap chain
~ manage image views and frambuffers —

acquire an image from swap chain, wrap it

into image views and a framebuffer
~ manage render passes

Vertex/index buffer

l

Input assembler

y

Vertex shader

h 4

Tessellation

Y

0 3
A set up VkPipeline — Geometry shader

Y

Rasterization

y

Fragment shader HH

Y

Color blending

l

Framebuffer

allocate command buffers from a command
pool

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
|
1
\
|
1
|
1
|
|
1
|
\
1
1
|
|
|
|
1
1
1
1
|
1

|
1
1

- vaetXX)d/vkEnumerateXXX

record commands into command buffer

s

e Createa VkInstance

e Selecta sﬁpporte'd graphics card (VkPhysicalDevice)

¢ Create a vkDevice and vkQueue for drawing and presentation
» Create a window, window surface and swap chain

* Wrap the swap chain images into VkImageView

» Create a render pass that specifies therendertargets and usage
¢ Create framebuffers for the render pass

e Set up the graphics pipeline

¢ Allocate and record a command buffer with the draw commands for every
possible swap chain image

¢ Draw frames by acquiring images, submitting the right draw command buffer and
returning the images back to the swap chain

submit commands
- main loop
sType

1

~use stn}cts to pass parameters pNext
|
l| VkResult

- validatic‘;n layers
|
- coding conventions == extensiobs

|
¢ vkCreateKXX/vkAllocateXXX =>
vkDestroyXXX/vkFreeXXX

pass a pointer to the number to get the
number of items

invoke the function again to retrieve data

~base code & glfw windo',w creation = don't forget glfwinit()

Thé instance is the connection between

~ create instance =

A your application and the Vulkan library and

creating it involves specifying some details
abo}lt your application to the driver.

| ..
| application name

I
— VkApplication —{~ engine name
I

: api version
1

| application
~ VkIri|stance
|

extensions

|
I~ introduce a validation laYer — ctistomize-messagecaltback(skipped)
|

~ pick physical device

~ get queue family indices!

~ create logical device =

I
I
|
I
I
|
I
~ create window surface +—
I
I
1

|
|
r_Iwhy: the logical device interface with the

physical device
|

r-:specify queue create info

I
—:specify device features

|
.

\:specify device-level extensions

set device-level layers for compatibility

establish a connection between vulkan and

~ window system to present result to the
screen

requires WSI extension for integration with
the native window system

- just use glfw api

in other words, ensure a device can present
iamges to the surfaces we created

I
I :
query for prensentation support
~ create present queue -[

I
I

I

I

~ ensure the physical device is capable
I
,' pixel format
I ~ format —[
u' color space
immediate
I
1 fifo
1 ~ present mode
| i i fifo relaxed
-~ create swap chain '4-— choose the right settings =
I mailbox
I
I .
| height
] M~ extent { (should be in right units]
/ width
I
/ - etc.
I
" \- save the format and extent for later use
)
1 . . for example if it should be treated as a 2D
: . VkImageView describes how to access the p .
~ create image ,(11ews = why = . . = texture depth texture without any
! image and which part of the image to access : .
/ mipmapping levels.
)
/ collect raw vertex data from buffers
/ ~ input assembler —(
/ index buffer may be involved
/
,’ - vertex shader = run for every vertex
/
I’ - tessellation === subdevide geomerty based on certain rules
/
II r~ geometry shader == run for every primitives(triangle, line, point)
/ . . C . .
/ discretizes the primitives into fragments.
,’ These are the pixel elements that they fill on
/ o the framebuffer
Il ~ rasterization
II ~ structure = use depth testing to eliminate obscured
. / fragments
A
Vulkan Tutorial 4 / | |
1 invoked for every fragment that survives
,’ and determines which framebuffer(s) the
// fragments are written to and with which
/ ¢ color and depth values
// fragment shader
// using the interpolated data from the vertex
/ shader, which can include things like
,/ texture coordinates and normals for lighting
/
/
/ - color blending =——
drawing a triangle

~ some stages can be skipped

™~ set up the pipeline J

\- configure fixed-functions =

attachment description

/
- create render passes

™ record command buffer =

A draw frame =

\-sync

~ outline ==

subpasses II

~ pipelines are fixed after creation

~ create shaders modules =

mix different fragments that map to the
same pixel in the framebuffer

skip tessellation and geometry shader if we
do not need them

skip fragment shader while generating a
shadow map

glsl ==glslc==> SPIR-V => machine language
of GPU

. the pipeline at draw time
~ dynamic state

size of the viewport
I~ vertext input

I~ input assembly

can actually be changed without recreating

Viewport Scissor

rectangle
= viewport and scissors =

A the framebuffer that the output will be
rendered to.

pixels will actually be stored

\-but it requires to enable a device feature
during logical device creation

cull mode
= rasterizer state {

front face direction

G y

~ depthtest
N color blending
M~ uniform variables = specify in VkPipelineLayout
\- create pipeline = very very verbose

I/
fix subpags dependencies
= create command pool and commaxlld buffer

I
~ vkCrjdXXX
I
- begil}
1
~ start renderpass
1

~bind ipeline
|

\
- draw |
\

- end ren)glerpass
\

\

N set vié\wport and scissor

~ wait for p‘{evious frame to finish

~ acquire an‘i\mage from swapchain

\
—record a com{nand buffer

- submit record\ed command buffer

\

\- present the swapchain image

\

&PU-GPU
VkSemaphore {

\

order between queue operations

\
GPU-CPU\\
VkFence —[

A~ tiny fix: allow multiple frames in flight

\- tiny fix: recreate swapchain

~ create buffer

~binding description & attribute description =

\
block the hé{st(CPU)

. . .\
‘- set it when create pipeline \

\
\
\
\
T
WL
1 Visible to DEVICE
|
|
- —
a little complicated when selecting memor A
V()2 (545141 § (=) 1 allocate memory — rpe o 2 V' — [systemmmory :I . GPU Memory
Il PR -
¥"V_J
Visible to HOST
g .
bind buffer (command) attachment = render target
M- use a staging buffer = for optimal performance
‘ ‘- use a index buffer
use resource descriptors for volatile . . WL
~ : = uniform attributes
attributes passed to shader

descriptor sets, descriptor pool, descriptors,
" uniform buffers

uniform shader

creation

- usage

bind the descriptor set during rendering
~ create a staging buffer

P~ copy image data into the staging buffer

r for it

transition image layoutto ___ use image memory barrier, {
q TRANSFER_DST_OPTIMAL vkCmdPipelineBarrier
= copy staging buffer contents to the image

_ transiton image layout to
SHADER_READ_ONLY_OPTIMAL

\- create image view

\- create image sampler == repeat mode, anisotropy, filter

| update descriptor set to reference image
view and sampler

_ Update vertex data, vertex shader and
fragment shader

specify descriptor layout during pipeline

UBO

[

=

== =
=

=

—

=

=

e

==

ol 11

"Think of a single descriptor as a handle or
pointer into a resource. That resource being

a Buffer or a Image, and also holds other
information, such as the size of the buffer, or
the type of sampler if it's for an image. A

VkDescriptorSet is a pack of those pointers
that are bound together. Vulkan does not

allow you to bind individual resources in

sets." -- Vulkan Guide

allocate a descriptor set from descriptor pool

create texture image and allocate memory ___format, extent, mip levels, samplers, tiling,

sharing mode, initial layout, etc.

srcAccessMask, dstAccessMask

srcStage, dstStage

shaders. They have to be grouped in the

A viewport basically describes the region of

Viewport Scissor

rectangle

_ scissor rectangles define in which regions

multiple viewports and scissors is possible,

https://vulkan-tutorial.com/
https://vkguide.dev/docs/chapter-4/descriptors/#:~:text=A%20VkDescriptorSet%20is%20a%20pack%20of%20those%20pointers,very%20inefficient%20and%20won%E2%80%99t%20work%20in%20many%20hardware.

