定义

Sn=0π/2sinnxdx S_n = \int_0^{\pi/2} \sin^n x dx

结论

Sn=n1nSn2S0=π2S1=1 \begin{aligned} & S_n = \frac{n-1}{n}S_{n-2} \\ & S_0 = \frac{\pi}{2} \\ & S_1 = 1 \end{aligned}

另外注意

Sn=0π/2sinnxdx=0π/2cosnxdx S_n = \int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n x dx

推导

主要使用分部积分。S0S_0S1S_1的计算这里省略。

另外可以注意,改变SnS_n的定义为余弦的积分,结论依然成立。

Sn=0π/2sinnxdx=0π/2sinn1xdcosx=[sinn1xcosx0π/20π/2cosxdsinn1x]=0π/2cos2x(n1)sinn2xdx=0π/2(1sin2x)(n1)sinn2xdx=(n1)0π/2sinn2xdx(n1)0π/2sinnxdx=(n1)Sn2(n1)SnSn=n1nSn2 \begin{aligned} S_n &= \int_0^{\pi/2} \sin^n x dx \\ = & -\int_0^{\pi/2} \sin^{n-1} x d\cos x \\ = & -\left[\left. \sin^{n-1} x\cos x\right|_0^{\pi/2} - \int_0^{\pi/2}\cos x d\sin^{n-1} x\right] \\ = & \int_0^{\pi/2}\cos^2 x (n-1)\sin^{n-2} x dx \\ = & \int_0^{\pi/2}(1-\sin^2 x)(n-1)\sin^{n-2} x dx \\ = & (n-1)\int_0^{\pi/2}\sin^{n-2}xdx - (n-1)\int_0^{\pi/2} \sin^n xdx \\ = & (n-1)S_{n-2} - (n-1)S_n \\ \Rightarrow & S_n = \frac{n-1}{n}S_{n-2} \end{aligned}