求积分

xln(x+1+x2)(1+x2)2dx \int \frac{x\ln(x+\sqrt{1+x^2})}{(1+x^2)^2}dx


解:

xln(x+1+x2)(1+x2)2dx=ln(x+1+x2)2(1+x2)2d(x2)=ln(x+1+x2)2(1+x2)2d(x2+1)=12ln(x+1+x2)d(11+x2)=ln(x+1+x2)11+x2+1211+x21+x1+x21+1+x2dx=12ln(x+1+x2)1+x2+121(1+x2)32dx \begin{aligned} & \int \frac{x\ln(x+\sqrt{1+x^2})}{(1+x^2)^2}dx \\ = & \int\frac{\ln(x+\sqrt{1+x^2})}{2(1+x^2)^2}d(x^2)\\ = &\int\frac{\ln(x+\sqrt{1+x^2})}{2(1+x^2)^2}d(x^2+1) \\ = & -\frac{1}{2}\int \ln(x+\sqrt{1+x^2})d\left(\frac{1}{1+x^2} \right) \\ = & -\ln(x+\sqrt{1+x^2})\cdot \frac{1}{1+x^2} + \frac{1}{2}\int \frac{1}{1+x^2}\cdot \frac{1+\frac{x}{\sqrt{1+x^2}}}{1+\sqrt{1+x^2}}dx \\ = & -\frac{1}{2}\frac{\ln(x+\sqrt{1+x^2})}{1+x^2} + \frac{1}{2}\int \frac{1}{(1+x^2)^{\frac{3}{2}}}dx \end{aligned}

另解 1(1+x2)32dx\int \frac{1}{(1+x^2)^{\frac{3}{2}}}dx

1(1+x2)32dx=1(1+tan2θ)32dtanθ=x=tanθ1sec3θsec2θdθ=cosθdθ=sinθ \begin{aligned} & \int \frac{1}{(1+x^2)^{\frac{3}{2}}}dx \\ =& \int \frac{1}{(1+\tan^2\theta)^{\frac{3}{2}}} d\tan\theta \\ \overset{x = \tan\theta}{=} & \int \frac{1}{\sec^3\theta}\sec^2 \theta d\theta = \int \cos\theta d\theta \\ =& \sin\theta \end{aligned}

x2=sin2θ1sin2θx2x2sin2θsin2θ=0sin2θ=x21+x2 \begin{aligned} x^2 = \frac{\sin^2\theta}{1-\sin^2\theta} \Leftrightarrow x^2 -x^2\sin^2\theta - \sin^2\theta = 0 \Leftrightarrow \sin^2\theta = \frac{x^2}{1+x^2} \end{aligned}

故(可能需要分类讨论?)

sinθ=x1+x2 \sin\theta = \frac{x}{\sqrt{1+x^2}}

得原积分

12ln(x+1+x2)1+x2+x21+x2 -\frac{1}{2}\frac{\ln(x+\sqrt{1+x^2})}{1+x^2} + \frac{x}{2\sqrt{1+x^2}}